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ABSTRACT: We propose a simple realization of topological
edge states in zigzag chains of plasmonic nanoparticles,
mimicking the Kitaev model of Majorana fermions. We de-
monstrate the one-to-one correspondence between the
coupled dipole equations in the zigzag plasmonic chain and
the Bogoliubov-de-Gennes equations for the quantum wire on
top of superconductor and support the analytical theory by the
full-wave electromagnetic simulations. We reveal that localized
plasmons can be excited selectively at both edges of the zigzag
chain of plasmonic nanoparticles depending on the incident
plane wave polarization.
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The study of topological insulators is one of the most rapidly
developing areas of condensed matter physics.1,2 Such

structures possess bandgaps in the bulk and special edge/surface
states inside the gap. Contrary to traditional Tamm states, these
edge states are topologically protected. This means that they are
stable against a wide class of perturbations that keep a general
symmetry of the system,3 for example, time-reversal symmetry
or particle-hole symmetry. Recently, a significant progress
has been made in the study of the topological edge states of
photons in various structures, such as photonic crystals,4,5

coupled cavities,6 waveguide arrays,7−9 photonic quasicrystals,10,11

and metamaterials.12 Robust optical topological edge states are
promising candidates for future optical transmission lines,
surviving under any disorder.6

In this Letter, we introduce and analyze the topological states
in the chains of plasmonic nanoparticles. Plasmonic clusters of
different shapes demonstrate rich physics,13−18 and their point
symmetry can be probed by analyzing the scattering spectra.19

Our goal is to draw attention to the topological symmetry of
the clusters. We demonstrate a one-to-one correspondence
between the coupled localized plasmon modes in zigzag clusters
and the Majorana edge states of the Kitaev’s model for the
quantum wire on top of superconductor.20 Majorana fermions
are unique fermionic particles being their own antiparticles,21

they are now actively sought in solids22 as well as in optics,23 and
they are potential candidates to realize robust qubits.20 Here we
uncover additional symmetries of the zigzag chains, stemming
from the vector nature of the dipole−dipole interaction, and
show that plasmonic structures are promising candidates to
mimic fascinating Majorana physics.

The structure under consideration is schematically shown in
Figure 1. It presents a finite zigzag chain of j = 1, ..., N plasmonic
disks lying in the xy plane.
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The chain has the period L(x ̂+ y)̂ and each unit cell contains two
nanodisks of the radius R and the height h.
The simplest technique to determine the optical response is

to employ eigenmode decomposition. The system eigenmodes
for subwavelength nanoparticles is can be found based on the
electric dipole approximation:24,25

∑α= ̂ ̂ −
′

′ ′Gp r r p( )j
j

j j j
(2)

Here, pj is the dipole moment of jth particle, α̂ is the polarizability
tensor with nonzero components αxx = αyy = α∥, αzz = α⊥, and
Ĝ(r) is the tensor Green function. Equation 2 can be solved
numerically for an arbitrary geometry. However, it turns out
that for the particular zigzag arrangement eq 1, with the angle
between the nearest “bonds” is equal to 90°, the coupled
plasmonic eigenstates have special symmetry properties. To
demonstrate this effect, we include only nearest-neighbor
interactions in the dipole−dipole approximation with
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We also focus on the normal wave incidence, when the field
propagates along z direction. In this case, all the excited dipole
momenta lie in the xy plane and can be described in the following
basis

ν= +u j jp e e( ) ( )j j u j v (4)

ϕ ϕ ϕ ϕ= − ̂ + ̂ = − ̂ − ̂j je x y e x y( ) cos sin , ( ) sin cosu j j v j j

ϕ π= j/2j

We also use the pole approximation for the particle
polarizability α∥ = Γ∥/(ω0 − ω), valid near the plasmon re-
sonance frequency ω0. Substituting 4 and 3 into 2, we obtain the
homogeneous system of equations for coupled plasmonic
eigenmodes

ω ω− = + + Δ −+ − + −u t u u v v( ) ( ) ( )j j j j j0 1 1 1 1 (5)
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Equations 5 have a striking similarity to the Bogoliubov-de-Gennes
equations of Kitaev’s model, describing the quasi-particles in the
quantum wire lying on top of the superconductor.20 In the
original Kitaev’s HamiltonianH = (1/2)∑j(tcj

†cj+1 +Δcjcj+1) + h·
c, the constant t is the transfer integral describing the motion
along the wire, whileΔ is the superconducting gap, and cj (cj

†) are
the electron annihilation (creation) operators for the site j. In our
case, the role of particle-hole excitations is taken by the two
polarization degrees of freedom. Similar models also appear for
coupled waveguides,26,27 chains of defects inside the photonic
crystals,28 and conjugated polymer chains.29 The general
properties of the system eq 5 can be understood in the special
particular case when Δ = −t. For such parameters, the spectrum
contains only three eigenfrequencies, ω0 ± 2t and ω0. All the 2N
corresponding eigenmodes for the zigzag with N disks are
schematically illustrated in Figure 2. Themode shown in Figure 2a,
Figure 2d has the frequency

ω ω= − t2bright 0 (7)

and the total degeneracy N − 1. Because the dipole momenta on
the neighboring disks are parallel to each other, thismode is bright,
that is, it can be excited by a normally incident plane wave.
Conversely, the mode in Figure 2c,e is dark, has the frequency
ωdark = ω0 + 2t, and the same total degeneracy N − 1. The
remaining eigenmode is shown in Figure 2b. It has the frequency

ω ω=loc 0 (8)

corresponding to the single-particle resonance. This is an edge
eigenmode with nonzero momenta only at the first and last
disks. The mode is doubly degenerate, the y-polarized dipole
momentum corresponds to the first disk, x-polarized to the last
one. Indeed, while for j = 2, ..., N − 1 the in-plane dipole
momentum is coupled to one of the modes at Figure 2a or c, the
y- and x-polarized modes of the first and last particles remain
uncoupled and, hence, are localized.
It has been shown20 that the structure of the eigenmodes

remains qualitatively the same for arbitrary values of Δ ≠ 0.
Particularly, the degenerate bright and dark modes atω =ω0± 2t
evolve into the two allowed bands with the dispersionω(K) =ω0
± 2(t2 cos2 K + Δ2 sin2 K)1/2. Here, K is the Bloch wavevector,
uj+1 = eiKuj. The frequency of the double-degenerate state 8 is
equal to ω0 independent of Δ. For |Δ| ≠ 0 this state is ex-
ponentially localized at the structure edges, the case when
Δ =−t/3 corresponds to the edge states decaying as |pj|2∝ 1/2|j|.
Appearance of the edge states may be understood as the

topological transition taking place when the chain geometry
changes from a line to a zigzag. Such zigzag distortion is a
particular kind of the Peierls phase transition.31

The simple analysis above suggests the presence of localized
polarization-degenerate plasmonic eigenmodes in the zigzag
chain at the frequency corresponding to the resonance of the
single disk. To confirm this hypothesis we numerically simulate
the electric field induced in the structure by the plane wave
E0e

ikz, propagating along z direction at different frequencies. The
calculation has been performed using the CSTMicrowave Studio
software for touching nanodisks L = 2R. Electric field is linearly
polarized, E0 = cos ϕx ̂ + sin ϕy ̂ with ϕ = 45°. The results of
calculation are demonstrated in Figure 3. Thick/black curve in
the panel (a) shows numerically calculated extinction cross
section for the zigzag chain with 11 nanodisks. Thin/red curve
presents the cross section for a single disk, which has the dipole
resonance at the energy E ≈ 2.1 eV. The cross section for
the zigzag chain has a complex multipeak structure. Main peak in
the spectrum is blue-shifted from the single disk resonance, in

Figure 2. Illustration of the dipole eigenmodes of eq 5 for Δ = −t.

Figure 1. Schematics of a zigzag array of plasmonic nanoparticles.
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agreement with eq 7 for the bright mode eigenfrequency. The
results of the analysis of the electric field distribution, excited
inside the cluster at the different frequencies, are presented in the
panels (b−e). Panels (b)−(d) show the false color maps of the
electric field in the xy plane, while panel (e) shows the frequency
dependence of the electric field at the center of each particle.
At low (b) or large (d) frequencies, the induced electric field is
relatively homogeneously distributed inside the cluster. How-
ever, at the central frequency (panel c) the field has strong
maxima at the first and last particles. This is also demonstrated by
Figure 3e. Black and dark blue curves, corresponding to j = 1 and
j = 11 have maxima at the single particle resonance E ≈ 2.1 eV,
which is a direct manifestation of the excitation of localized states.
Next, we examine the polarization dependence of the struc-

ture response. Figure 4 presents the spatial distribution of the
polarization, excited at E = 2.1 eV for three different values of the
angle ϕ = 0, 45°, and 90° between the electric field direction and
the x axis. Panel (a) shows the polarization dependence of the
extinction cross section. The black line presents the extinction
cross section for ϕ = 45°, green curve shows the result for ϕ = 0.
Since the structure has mirror plane x = −y, the cross section for
ϕ = 0 and 90° is the same. Panels (b−e) illustrate the polarization
dependence of the induced electric field pattern.
Clearly, the direction of the incident wave polarization con-

trols the distribution of the field at the structure edges. Partic-
ularly, for the x polarization (ϕ = 0) the field is localized at the last
particle, j = 11, while for the y polarization (ϕ = 90°) the field is
localized at the first particle, in agreement with Figure 2b. The
effect is clearly manifested both in the color maps of the field
(panels b and d) and in the spatial distribution of the field in
the particle centers (green and red curves in panel e). The dipole
momenta of the particles, extracted from the electric field
distribution, are directed oppositely to the electric field (cyan
arrows in panels b−d). The case when ϕ = 45° corresponds to
equal amplitudes for both particles (panel c and black line in

panel e). Hence, the presence of the polarization-degenerate
eigenmode at E ≈ 2.1 eV allows selective excitation of the first or
the last disk. This is an optical analogue of a qubit, based on
Majorana fermions, proposed by Kitaev.20 Here, the polarization
switching has a purely classical origin. The truly quantum regime,
where the bosonic properties of the edge states become
manifested, may demonstrate even richer physics. For instance,
similar systems with tunneling-coupled cavities are already used
for polarization-entangled photon pair generation32 and are
proposed for quantum computing devices with multipartite
entanglement.33

It is also instructive to examine the degree of the states
localization as function of the number of particles in the chain.
The results forN = 3, ..., 6, 10, and 11 are shown in Figure 5. This

figure demonstrates that the edge states are manifested already
for the smallest possible structure with defined edges, that is, for
the zigzag chain withN = 3 particles. Importantly, the localization
takes place at the same frequency independent of the structure

Figure 3. (a) Extinction cross section spectrum for a zigzag chain with
11 silver nanodisks (thick/black curve) and for single disk (thin/red
curve). (b−d) False color maps of the electric field intensity at the
different energies, indicated in the panels. (e) Energy dependence of the
squared electric field in the centers of the disks. Vertical dotted line in
panels (a) and (e) denotes the energy E ≈ 2.1 eV, where the field
localization at the zigzag edges takes place. Calculation was performed
for touching nanodisks with R = 30 nm, h = 3 nm, ϕ = 45°. Dielectric
constant of silver was taken from ref 30.

Figure 4. (a) Extinction cross section spectrum for the zigzag with 11
disks calculated at ϕ = 45° (solid/black curve) and at ϕ = 0°, 90°
(dashed/green curve). Thin/red curve corresponds to the extinction for
a single disk. (b−d) False color maps of the electric field intensity at E =
2.1 eV and different incident wave polarizations ϕ = 0°, 45°, and 90°,
respectively, indicated in the panels by white arrows. Cyan arrows
schematically illustrate the real parts of the dipole momenta induced in
the particles. (e) Dependence of the electric field in the particle center
on the particle number for ϕ = 0° (green triangles), 45° (squares), and
90° (red triangles) at E = 2.1 eV. Lines are guide for eye. Other
parameters are the same as in Figure 3

Figure 5. Dependence of the electric field in the particle center on the
particle number for zigzags withN = 3, 4 (a),N = 5, 6 (b),N = 10, 11 (c)
disks. Lines are guide for eye. Calculation was performed at E ≈ 2.1 eV,
ϕ = 45°, and the same other parameters as in Figure 3
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length. Localization has a compact character: its strength slowly
increases when the number of particles grows but saturates
already at N ≈ 5. The maximum edge-to-center ratio of the field
intensities, |E1|

2/|E6|
2 is about three. Thus, the localization is

weaker than exponential, contrary to the traditional Kitaev
model. The reason is that the direct correspondence between the
Kitaev model and the considered model is valid only for the
nearest-neighbor dipole−dipole interactions. The long-ranged
electromagnetic coupling between the nanodisks partially
suppresses the localization.
Figure 6 examines the robustness of the edge states against the

disorder. Panels (a) and (b) are calculated for the ideal structure,

where all the disk diameters are equal to D̅ = 50 nm and the
center-to-center distance is L̅ = 60 nm. Results are qualitatively
the same as in Figure 3: at the single disk resonance energy
E ≈ 2.15 eV mainly the first and last particles are excited. We
include the disorder both in the positions and in the diameter
of the disks. This leads to the inhomogeneous broadening of the
dipole resonances and to the modification of the coupling
between the disks due to the random distortion of the zigzag
chain. Particularly, we assume that the in-plane disk center
coordinates x and y and the disk diameter are independent
random Gaussian variables, characterized with the same
dispersion σD. Figure 6c−f is calculated for two realizations
of the disorder with different strengths, σD = 0.1D̅ = 5 nm and
σD = 0.2D̅ = 10 nm. The impact of the disorder on the excited
electric field distribution is significant already for σD = 0.1D̅, see
Figure 6a,c. However, the edge states still survive in this case.
This is illustrated by Figure 6d, which demonstrates preferential
excitation of the edges of the disordered chain at the frequency of
the single disk resonance of the ideal structure. Edge states are
completely destroyed only for strong disorder, σD = 0.2D̅, when
the chain mode structure is changed completely, see Figure 6e,f.
In summary, we have proposed a simple plasmonic analogue of

the concept of Majorana topological edge states in the zigzag

chain of metallic nanodisks. We have demonstrated an exact
correspondence between Kitaev’s model of a finite-extent
quantum wire over superconductor to the model of coupled
electric dipoles in the plasmonic chain. This mapping is valid for
the dipole−dipole interactions between the nearest neighbors of
the chain. The edge states have been shown to be robust against
distant interactions and disorder. We have demonstrated the
possibility to excite selectively two edges of the zigzag chain by
changing the direction of the linear polarization of the incident
light. We believe that the study of the topological properties of
the polarization-entangled eigenmodes suggests a new way for
engineering the properties of plasmonic clusters for novel
applications in nanophotonics.
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